Evaporator and Condenser Pressure Drops

EWWD~J-SS

	120	140	150	180	210	250	280	310	330	360
Cooling capacity (kW)	120	146	155	178	208	256	285	310	334	357
Water flow (l/s) - Evaporator	5.73	6.98	7.41	8.50	9.94	12.25	13.63	14.81	15.96	17.06
Evaporator Pressure Drops (kPa)	15	13	40	38	36	28	33	40	40	38
Water flow (l/s) - Condenser	7.04	8.57	9.25	10.62	12.30	15.06	16.89	18.49	19.91	21.28
Condenser Pressure Drops (kPa)	20	12	11	11	11	16	26	11	11	11

NOTES

Water flow and pressure drop referred to nominal condition: evaporator water in/out: 12/7°C - condenser water in/out: 30/35°C

	380	400	450	500	530	560
Cooling capacity (kW)	386	416	464	513	541	570
Water flow (l/s) - Evaporator	18.44	19.88	22.17	24.51	25.85	27.23
Evaporator Pressure Drops (kPa)	38	36	36	28	28	33
Water flow (I/s) - Condenser	23.15	24.59	27.33	30.10	31.92	33.78
Condenser Pressure Drops (kPa)	11	11	11	16	16	26

NOTES

Water flow and pressure drop referred to nominal condition: evaporator water in/out: 12/7°C - condenser water in/out: 30/35°C

Evaporator and Condenser Pressure Drops

To determinate the evaporator or condenser pressure drop for different versions or at different working condition, please refer to the following formula:

$$PD_{2}(kPa) = PD_{1}(kPa) \times \left(\begin{array}{c} Q_{2}(l/s) \\ \hline Q_{1}(l/s) \end{array} \right)^{1.8}$$

where:

PD2 Pressure drop to be determinated (kPa)
PD1 Pressure drop at nominal condition (kPa)
Q2 water flow at new working condition (l/s)
Q1 water flow at nominal condition (l/s)

How to use the fomula: Example (Evaporator)

The unit EWWD280J-SS has been selected for working at the following conditions:

- evaporator water in/out: 11/6°C
- condenser water in/out: 30/35°C

The cooling capacity at these working conditions is: $277\,\mathrm{kW}$

The evaporator water flow at these working conditions is: 13.23 l/s

The unit EWWD280J-SS at nominal working conditions has the following data:

- evaporator water in/out: 12/7°C
- condenser water in/out: 30/35°C

The cooling capacity at these working conditions is: 285 kW

The evaporator water flow at these working conditions is: 13.62 l/s

The evaporator pressure drop at these working conditions is: 33 kPa

The evaporator pressure drop at the selected working condition will be:

$$PD_{2} \, (\text{kPa}) \! = \! 33 \, (\text{kPa}) \times \left[\begin{array}{c} \underline{} \\ \underline{$$

PD₂ (kPa) = **31** (kPa)

Note: If the calculated evaporator water pressure drop is below 10 kPa or above 100 kPa please contact the factory for dedicated evaporator..