EWAD200D-HS EWAD210D-HS EWAD230D-HS EWAD260D-HS EWAD270D-HS EWAD290D-HS EWAD310D-HS EWAD340D-HS EWAD380D-HS EWAD420D-HS EWAD450D-HS EWAD480D-HS EWAD510D-HS EWAD550D-HS EWAD590D-HS
Cooling capacity Nom. kW 194 (1) 208 (1) 233 (1) 255 (1) 272 (1) 288 (1) 305 (1) 334 (1) 379 (1) 413 (1) 446 (1) 476 (1) 512 (1) 545 (1) 585 (1)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Power input Cooling Nom. kW 77.9 (1) 76.0 (1) 83.9 (1) 92.1 (1) 98.9 (1) 105 (1) 114 (1) 122 (1) 129 (1) 143 (1) 152 (1) 164 (1) 177 (1) 185 (1) 194 (1)
EER 2.49 (1) 2.73 (1) 2.77 (1) 2.77 (1) 2.75 (1) 2.73 (1) 2.68 (1) 2.75 (1) 2.93 (1) 2.90 (1) 2.93 (1) 2.90 (1) 2.89 (1) 2.95 (1) 3.02 (1)
ESEER 3.02 3.16 3.24 3.11 3.20 3.18 3.17 3.15 3.46 3.50 3.57 3.57 3.55 3.60 3.68
IPLV 3.56 3.74 3.77 3.66 3.74 3.73 3.72 3.64 3.99 4.00 4.05 3.99 4.10 4.18 4.50
Dimensions Unit Depth mm 2,239 2,239 3,339 3,339 3,339 3,339 3,339 4,040 4,040 4,040 4,040 4,940 4,940 4,940 4,940
    Height mm 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223
    Width mm 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234
Weight Operation weight kg 2,500 2,500 2,960 2,960 2,960 2,960 2,960 3,300 3,300 3,447 4,112 4,526 4,526 4,526 4,526
  Unit kg 2,475 2,470 2,865 2,865 2,870 2,870 2,870 3,185 3,185 3,277 3,942 4,356 4,361 4,361 4,366
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube
  Water flow rate Cooling Nom. l/s 9.3 9.9 11.1 12.2 13.1 13.8 14.6 16.0 18.2 19.8 21.4 22.8 24.5 26.1 28.0
  Water pressure drop Cooling Nom. kPa 32 24 46 52 54 59 64 58 70 46 53 58 51 56 53
  Water volume l 25 30 95 95 90 90 90 115 115 170 170 170 165 165 160
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler
Fan Quantity   4 4 6 6 6 6 6 8 8 8 8 10 10 10 10
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 21,848 21,153 32,772 32,772 32,251 31,729 31,729 43,696 43,696 43,696 42,306 54,620 54,620 54,620 54,620
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800
Fan motor Drive   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
  Input Cooling W 7,000 7,000 10,500 10,500 10,500 10,500 10,500 14,000 14,000 14,000 14,000 17,500 17,500 17,500 17,500
  Speed Cooling Nom. rpm 890 890 890 890 890 890 890 890 890 890 890 890 890 890 890
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
  Oil Charged volume l 26 26 26 26 26 26 26 26 26 32 32 32 32 32 32
Operation range Air side Cooling Max. °CDB 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15
Sound power level Cooling Nom. dBA 96 96 96 96 96 96 96 97 99 97 98 98 98 99 100
Sound pressure level Cooling Nom. dBA 77 (2) 77 (2) 77 (2) 77 (2) 77 (2) 77 (2) 77 (2) 77 (2) 79 (2) 77 (2) 78 (2) 78 (2) 78 (2) 79 (2) 80 (2)
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Charge Per circuit kg 18.0 21.0 22.0 26.0 28.0 31.0 28.0 28.0 34.0 30.0 45.0 47.5 46.0 46.0 47.0
  Per circuit TCO2Eq 25.7 30.0 31.5 37.2 40.0 44.3 40.0 40.0 48.6 42.9 64.4 67.9 65.8 65.8 67.2
Piping connections Evaporator water inlet/outlet (OD)   3" 3" 4" 4" 4" 4" 4" 4" 4" 5" 5" 5" 5" 5" 5"
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 222 222 239 239 283 291 303 307 312 423 468 489 489 498 498
  Running current Cooling Nom. A 134 131 145 157 169 180 191 204 214 239 258 275 295 306 320
    Max A 172 172 197 213 224 234 249 272 283 320 338 367 388 399 410
  Max unit current for wires sizing A 188 188 214 232 244 255 272 296 309 349 369 399 422 434 447
Fans Nominal running current (RLA) A 16 16 24 24 24 24 24 32 32 32 32 40 40 40 40
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 78 78 78 95 95 105 105 120 126 141 153 153 174 174 185
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Compressor 2 Maximum running current A 78 78 95 95 105 105 120 120 126 148 153 174 174 185 185
Notes Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.