EWAD210D-SX EWAD230D-SX EWAD250D-SX EWAD270D-SX EWAD290D-SX EWAD300D-SX EWAD310D-SX EWAD370D-SX EWAD410D-SX EWAD450D-SX EWAD490D-SX
Cooling capacity Nom. kW 202 (1) 230 (1) 252 (1) 270 (1) 285 (1) 298 (1) 308 (1) 369 (1) 412 (1) 449 (1) 490 (1)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Power input Cooling Nom. kW 80.8 (1) 86.0 (1) 94.4 (1) 105 (1) 115 (1) 127 (1) 137 (1) 150 (1) 171 (1) 175 (1) 189 (1)
EER 2.50 (1) 2.68 (1) 2.67 (1) 2.56 (1) 2.47 (1) 2.35 (1) 2.25 (1) 2.46 (1) 2.41 (1) 2.56 (1) 2.60 (1)
ESEER 3.29 3.52 3.41 3.44 3.34 3.29 3.15 3.14 3.39 3.50 3.47
Dimensions Unit Depth mm 3,139 4,040 4,040 4,040 4,040 4,040 4,040 4,040 4,040 4,940 4,940
    Height mm 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420
    Width mm 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234 2,234
Weight Operation weight kg 3,200 3,590 3,590 3,590 3,590 3,590 3,590 3,735 4,472 4,676 4,746
  Unit kg 3,110 3,475 3,475 3,425 3,430 3,430 3,430 3,560 4,302 4,506 4,581
Water heat exchanger Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube
  Water volume l 90 115 115 165 160 160 160 175 170 170 165
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler
Fan Air flow rate Nom. l/s 12,876 17,892 17,169 17,169 17,169 17,169 17,169 26,496 26,496 28,982 33,120
  Speed rpm 500 500 500 500 500 500 500 500 500 500 500
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 2
  Compressor-=-Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
Operation range Air side Cooling Max. °CDB 48 48 48 48 48 48 48 48 48 48 48
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15
Sound power level Cooling Nom. dBA 84 85 85 85 85 85 85 85 85 86 86
Sound pressure level Cooling Nom. dBA 65 (2) 65 (2) 65 (2) 65 (2) 65 (2) 65 (2) 65 (2) 65 (2) 65 (2) 66 (2) 66 (2)
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2
Charge Per circuit kg 21.0 24.0 26.0 32.0 33.0 34.0 34.0 34.0 35.0 38.0 40.0
  Per circuit TCO2Eq 30.0 34.3 37.2 45.8 47.2 48.6 48.6 48.6 50.1 54.3 57.2
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Notes Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.