EWAD170TZSR EWAD205TZSR EWAD235TZSR EWAD270TZSR EWAD320TZSR EWAD365TZSR EWAD370TZSR EWAD415TZSR EWAD465TZSR EWAD500TZSR EWAD540TZSR EWAD590TZSR EWAD640TZSR EWAD710TZSR
Cooling capacity Nom. kW 170 204.9 229.1 268.4 316.6 364.7 365.7 412.1 462.6 498.6 535.7 588.8 639.9 710.2
  Rated kW 170.0 204.9 229.1 268.4 316.6 364.7 365.7 412.1 462.6 498.6 535.7 588.8 639.9 710.2
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.3 28.6 33.3 28.6 25 22.2 15.4 14.3 16.7 15.4 14.3 13.3 12.5 11.1
Power input Cooling Nom. kW 62.21 72.51 79.05 96.04 115.7 133.2 133.7 144.6 163.6 177.9 190.1 216.6 234.8 266.6
EER 2.733 2.826 2.898 2.795 2.736 2.739 2.735 2.85 2.829 2.803 2.817 2.719 2.725 2.664
ESEER 4.62 4.78 4.75 4.8 4.82 4.93 4.65 4.81 4.81 4.84 4.83 4.85 4.76 4.92
IPLV 5.8 5.99 6.02 5.84 5.94 5.78 5.86 6.18 6.16 6.09 6.07 6.09 6.13 6.04
SEER 4.2 4.4 4.5 4.5 4.7 4.7 5.6 5.1 4.8 6.0 4.8 4.8 4.9 4.9
Dimensions Unit Depth mm 3,461 4,361 4,361 5,261 5,261 3,218 3,218 4,117 4,117 4,117 5,015 5,015 5,015 5,917
    Height mm 2,270 2,270 2,270 2,270 2,270 2,270 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222
    Width mm 1,224 1,224 1,224 1,224 1,224 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,013 2,174 2,280 2,602 2,693 2,903 4,190 4,622 4,785 4,840 5,068 5,357 5,426 5,748
  Unit kg 1,996 2,075 2,181 2,576 2,541 2,854 4,101 4,452 4,621 4,676 4,904 5,087 5,164 5,486
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water flow rate Cooling Nom. l/s 8.1 9.8 11 12.8 15.1 17.4 17.5 19.7 22.1 23.9 25.6 28.2 30.6 34
  Water pressure drop Cooling Nom. kPa 24.8 24.2 28.6 32.5 25.9 26.7 35.8 50.2 32.7 37.4 42.6 35.5 46.6 57.2
  Water volume l 16.7 23.5 23.5 26.1 38.8 49.5 89 170 164 164 164 270 262 262
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Heat exchanger Indoor side   water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   3 4 4 5 5 6 6 8 8 8 10 10 10 12
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 12,399 16,532 16,015 20,665 20,019 24,023 24,023 33,064 33,064 32,030 41,330 41,330 40,038 48,046
    Cooling Rated m³/h 44,636 59,515 57,654 74,394 72,068 86,483 86,483 119,030 119,030 115,308 148,788 148,788 144,137 172,966
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 700 700 700 700 700 700 700 700 700 700 700 700 700 700
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
  Input Cooling W 2,670 3,560 3,560 4,450 4,450 5,340 5,340 7,120 7,120 7,120 8,900 8,900 8,900 10,680
Compressor Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 13 13 13 13 13 13 26 26 26 26 26 26 26 26
Operation range Air side Cooling Max. °CDB 47 47 47 47 47 47 47 47 47 47 47 47 47 47
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 89.0 89.0 89.0 89.0 90.0 92.0 92.0 92.0 92.0 92.0 92.0 93.0 93.0 95.0
Sound pressure level Cooling Nom. dBA 70.0 70.0 69.0 70.0 71.0 73.0 73.0 72.0 72.0 72.0 72.0 73.0 73.0 74.0
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Charge kg 29 35 39 46 54 62 62 70 79 85 91 100 109 121
Charge Per circuit kgCO2Eq 41,470 50,050 55,770 65,780 77,220 88,660 44,330 50,050 56,485 60,775 65,065 71,500 77,935 86,515
  Per circuit TCO2Eq 41.5 50.1 55.8 65.8 77.2 88.7 44.3 50.1 56.5 60.8 65.1 71.5 77.9 86.5
Piping connections Evaporator water inlet/outlet (OD)   88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 114.3mm 139.7mm 139.7mm 139.7mm 139.7mm 168.3mm 168.3mm 168.3mm
Space cooling A Condition 35°C Pdc kW 170.0 204.9 229.1 268.4 316.6 364.7 365.7 412.1 462.6 498.6 535.7 588.8 639.9 710.2
    EERd   2.7 2.8 2.9 2.8 2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.7 2.7 2.7
  B Condition 30°C Pdc kW 125.5 152.1 169.5 199.7 235.2 270.4 270.8 313.0 344.2 369.3 396.9 438.2 475.8 526.3
    EERd   3.5 3.6 3.8 3.7 3.7 3.7 3.8 4.3 4.0 4.0 4.0 3.9 3.9 3.8
  C Condition 25°C Pdc kW 79.5 96.4 107.5 126.6 149.2 171.4 172.2 199.0 218.8 234.7 252.3 278.5 302.4 334.6
    EERd   5.1 5.2 5.4 5.4 5.6 5.6 5.4 6.1 5.7 5.8 5.7 5.8 5.9 5.8
  D Condition 20°C Pdc kW 35.8 43.3 48.2 56.8 66.9 76.9 77.0 89.0 97.8 105.0 112.8 124.3 135.2 149.6
    EERd   6.1 6.3 6.4 6.5 7.1 7.3 28.8 8.1 7.1 29.6 7.1 7.0 7.5 7.5
  ηs,c % 164.2 171.0 178.6 178.2 185.4 186.6 220.2 199.8 187.0 235.8 189.4 188.6 194.2 191.4
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 89.0 89.0 89.0 89.0 90.0 92.0 92.0 92.0 92.0 92.0 92.0 93.0 93.0 95.0
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.120 0.120 0.120 0.120 0.120 0.120 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
  Off mode POFF W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  Standby mode Cooling PSB W 0.050 0.050 0.050 0.050 0.050 0.050 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
  Thermostat-off mode PTO Cooling W 0.160 0.160 0.160 0.160 0.160 0.180 0.310 0.380 0.310 0.320 0.360 0.540 0.390 0.390
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  Running current Cooling Nom. A 105 121 132 159 191 218 223 241 273 294 314 359 385 434
    Max A 120 142 156 185 215 246 259 284 313 339 370 402 430 491
  Max unit current for wires sizing A 130 155 170 186 234 246 282 310 341 367 372 438 469 491
Fans Nominal running current (RLA) A 8 10 10 13 13 16 16 21 21 21 26 26 26 31
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 112 132 146 172 202 230 122 132 146 159 172 188 202 230
  Starting method   Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter
Compressor 2 Maximum running current A             122 132 146 159 172 188 202 230
Notes Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511
  Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current.
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.