EWAQ170F-XS EWAQ200F-XS EWAQ220F-XS EWAQ250F-XS EWAQ310F-XS EWAQ320F-XS EWAQ350F-XS EWAQ360F-XS EWAQ400F-XS EWAQ430F-XS EWAQ450F-XS EWAQ520F-XS EWAQ610F-XS EWAQ680F-XS
Cooling capacity Nom. kW 170.4 194.5 220.4 244.5 315.9 315.9 355.9 355.9 402 428.2 456.7 527.5 606.6 672.3
  Rated kW 170.4 194.5 220.4 244.5 315.9 315.9 355.9 355.9 402 428.2 456.7 527.5 606.6 672.3
Capacity control Method   Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged
  Minimum capacity % 25 21 50 22 27 27 23 25 33 25 25 25 25 25
Power input Cooling Nom. kW 54.81 62.23 70.63 78.32 102.1 102.1 115.3 115.3 130.1 137.2 146.4 170.1 197.7 219.1
EER 3.108 3.125 3.12 3.122 3.094 3.094 3.087 3.087 3.097 3.122 3.12 3.101 3.069 3.069
ESEER 3.9 4.1 3.95 4.08 4.04 4.3 4.05 4.33 4.24 4.27 4.23 4.35 4.3 4.23
IPLV 4.56 4.76 4.67 4.7 4.67 4.6 4.64 4.8 4.72 4.65 4.61 4.95 4.82 4.68
SEER 4.159 4.009 4 4.145 4.164 4.24 4.086 4.231 4.28 4.354 4.364 4.277 4.278 4.275
Dimensions Unit Depth mm 4,413 4,413 5,313 5,313 6,213 3,210 6,213 3,210 4,110 4,110 4,110 5,010 5,010 5,910
    Height mm 2,271 2,271 2,271 2,271 2,271 2,221 2,271 2,221 2,221 2,221 2,221 2,221 2,221 2,221
    Width mm 1,224 1,224 1,224 1,224 1,224 2,258 1,224 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 1,700 1,973 2,225 2,353 2,514 2,514 2,672 2,772 2,784 2,891 2,907 3,615 3,727 4,115
  Unit kg 1,688 1,958 2,210 2,339 2,500 2,600 2,632 2,732 2,744 2,845 2,861 3,569 3,667 4,054
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger
  Water flow rate Cooling Nom. l/s 8.2 9.3 10.5 11.7 15.1 15.1 17 17 19.3 20.5 21.8 25.3 29 32.2
  Water pressure drop Cooling Nom. kPa 25.1 26.6 33.5 42.1 22.2 22.2 23.3 23.3 30.5 28.6 29.6 41.1 44.1 55.2
  Water volume l 12 14 14 14 14 14 40 40 40 46 46 46 60 60
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Heat exchanger Indoor side   water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   4 4 5 5 6 6 6 6 8 8 8 10 10 12
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 21,845 21,148 26,874 25,204 31,722 31,722 30,245 30,245 42,296 40,326 40,326 50,408 50,408 60,489
    Cooling Rated m³/h 76,497.75 78,035.17 104,696.90 104,696.90 117,054.90 117,054.90 111,668.40 111,668.40 156,070.30 148,887.40 148,887.40 186,112.10 186,112.10 223,336.70
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Fan motor Drive   DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL
  Input Cooling W 7,000 7,000 8,750 8,750 10,500 10,500 10,500 10,500 14,000 14,000 14,000 17,500 17,500 21,000
Compressor Quantity   4 4 4 4 4 4 4 4 4 4 4 6 6 6
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 12.8 15.8 18.8 23 26.2 26.2 25.2 25.2 25.2 25.2 25.2 37.8 37.8 37.8
Operation range Air side Cooling Max. °CDB 52 52 52 52 52 52 52 52 52 52 52 52 52 52
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 18 18 18 18 18 18 18 18 18 18 18 18 18 18
      Min. °CDB -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13
Sound power level Cooling Nom. dBA 91 93 94 95 96 96 96 96 97 98 98 98 99 100
Sound pressure level Cooling Nom. dBA 72 74 75 76 76 77 76 77 78 78 79 78 79 79
Refrigerant Type   R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A
  GWP   2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 28 31 33 40 52 52 52 52 62 62 62 74 72 83
Charge Per circuit kgCO2Eq 29,232 32,364 34,452 41,760 54,288 54,288 54,288 54,288 64,728 64,728 64,728 77,256 75,168 86,652
  Per circuit TCO2Eq 29.2 32.4 34.4 41.8 54.3 54.3 54.3 54.3 64.7 64.7 64.7 77.2 75.2 86.6
Piping connections Evaporator water inlet/outlet (OD)   3" 3" 3" 3" 3" 4" 3" 4" 4" 4" 4" 4" 4" 4"
Space cooling A Condition 35°C Pdc kW 170.4 194.5 220.4 244.5 315.9 315.9 355.9 355.9 402 428.2 456.7 527.5 606.6 672.3
    EERd   3.108 3.125 3.12 3.122 3.094 3.094 3.087 3.087 3.097 3.122 3.12 3.101 3.069 3.069
  B Condition 30°C Pdc kW 126.14 130.54 158.75 162.8 218.92 217 239.42 237 272 316.83 337.89 416.89 413.8 533.72
    EERd   4.08 3.89 4.05 4.01 3.84 4.04 3.74 3.87 3.89 3.76 3.88 3.8 3.73 3.66
  C Condition 25°C Pdc kW 80.12 91.41 113.9 114.89 148.44 148.44 167.24 167.24 189.41 201.23 214.61 244.96 257.29 316.06
    EERd   5.27 4.91 5.14 4.96 4.78 5.04 4.49 4.59 4.81 4.94 4.97 5.11 5.08 5.02
  D Condition 20°C Pdc kW 35.8 40.84 46.33 51.33 66.33 66.33 74.72 74.72 84.63 89.91 95.89 110.77 140.01 141.13
    EERd   4.98 4.69 3.96 4.78 5.08 4.77 5.21 5.64 5.29 5.61 5.33 5.04 5.08 5.16
  ηs,c % 163.36 157.36 157 162.8 163.56 166.6 160.44 166.24 168.2 171.16 171.56 168.08 168.12 168
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 91 93 94 95 96 96 96 96 97 98 98 98 99 100
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Low temperature application Medium temperature application Medium temperature application Medium temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.198 0.198 0.198
  Off mode POFF W 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  Standby mode Cooling PSB W 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3
  Thermostat-off mode PTO Cooling W 0.222 0.222 0.222 0.222 0.272 0.272 0.292 0.292 0.292 0.292 0.292 0.358 0.358 0.358
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 281 338 353 408 480 480 509 509 629 643 657 642 768 818
  Running current Cooling Nom. A 110 117 128 141 181 181 202 202 229 240 254 300 343 379
    Max A 138 149 164 180 229 229 258 258 294 308 322 391 433 482
  Max unit current for wires sizing A 151 164 181 198 251 251 284 284 323 338 354 430 476 530
Fans Nominal running current (RLA) A 16 16 20 20 24 24 24 24 32 32 32 40 40 48
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 61 66 72 80 102 102 117 117 131 131 145 175 189 217
  Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Compressor 2 Maximum running current A 61 66 72 80 102 102 117 117 131 145 145 175 203 217
Notes Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water (3) - Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (5) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (9) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.