Specifications Table for EWAT-B-SL

EWAT085B-SLA1 EWAT115B-SLA1 EWAT135B-SLA1 EWAT155B-SLA2 EWAT175B-SLA1 EWAT195B-SLA2 EWAT205B-SLA2 EWAT215B-SLA1 EWAT240B-SLA2 EWAT240B-SLA2-VFDFAN EWAT260B-SLA2 EWAT260B-SLA2-VFDFAN EWAT290B-SLA1 EWAT290B-SLA1-VFDFAN EWAT310B-SLA2 EWAT310B-SLA2-VFDFAN EWAT330B-SLA2 EWAT330B-SLA2-VFDFAN EWAT340B-SLA1 EWAT340B-SLA1-VFDFAN EWAT350B-SLA2 EWAT350B-SLA2-VFDFAN EWAT420B-SLA2 EWAT420B-SLA2-VFDFAN EWAT460B-SLA2 EWAT460B-SLA2-VFDFAN EWAT510B-SLA2 EWAT510B-SLA2-VFDFAN EWAT570B-SLA2 EWAT570B-SLA2-VFDFAN EWAT610B-SLA2 EWAT610B-SLA2-VFDFAN EWAT670B-SLA2 EWAT670B-SLA2-VFDFAN
Cooling capacity Nom. kW 80.92 108.73 131.2 157.55 174.49 190.91 209.86 216.55 240.44 240.44 259.39 259.39 281.85 281.85 305.6 305.6 328.59 328.59 342 342 348.88 348.88 414.98 414.98 465.75 465.75 511.1 511.1 564.43 564.43 609.05 609.05 664.62 664.62
Capacity control Method   Staged Staged Staged Variable Staged Variable Variable Staged Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 50 38 50 25 38 21 19 50 17 17 25 25 24 24 14 14 13 13 33 33 19 19 17 17 15 15 14 14 12 12 11 11 17 17
Power input Cooling Nom. kW 31.8 38.5 49.8 61.8 67.7 69.4 79.8 85.6 85.3 85.5 95.7 95.7 108 108 112 112 121 122 117 117 132 132 146 147 171 171 186 186 216 216 230 230 239 239
EER 2.55 2.82 2.64 2.55 2.58 2.75 2.63 2.53 2.82 2.81 2.71 2.71 2.61 2.61 2.71 2.71 2.7 2.69 2.92 2.91 2.64 2.64 2.83 2.82 2.72 2.71 2.74 2.74 2.61 2.61 2.64 2.64 2.78 2.77
ESEER 3.96 4.03 3.86 3.83 4.09 4 3.94 3.85 3.94 4 3.76 3.86 3.99 4.09 4.02 4.09 3.97 4.01 4.06 4.21 3.91 3.98 4.09 4.14 4 4.13 3.97 4.06 4.03 4.03 4.01 4.08 3.98 4.11
Dimensions Unit Depth mm 2,120 2,660 2,660 3,570 3,180 4,170 4,170 3,780 2,326 2,326 2,326 2,326 2,326 2,326 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 5,025 5,025 5,874 5,874
    Height mm 1,801 1,801 1,801 1,822 1,801 1,822 1,822 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 1,204 1,204 1,204 1,204 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 696 783 830 1,035 1,006 1,198 1,190 1,210 1,822 1,822 1,849 1,849 1,951 1,951 2,268 2,268 2,296 2,296 2,350 2,350 2,324 2,324 2,784 2,784 2,954 2,954 3,111 3,111 3,360 3,360 3,762 3,762 4,089 4,089
  Unit kg 689 773 820 1,026 993 1,185 1,177 1,191 1,815 1,815 1,843 1,843 1,935 1,935 2,251 2,251 2,277 2,277 2,330 2,330 2,304 2,304 2,754 2,754 2,921 2,921 3,078 3,078 3,312 3,312 3,718 3,718 4,053 4,053
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water volume l 5 6 9 7 12 11 11 16 11 11 11 11 16 16 19 19 19 19 20 20 19 19 28 28 28 28 28 28 42 42 42 42 42 42
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 6,022 9,036 9,036 13,354 12,023 16,710 16,710 15,057 20,306 20,306 20,306 20,306 20,306 20,306 25,382 25,382 25,382 25,382 30,459 30,459 25,382 25,382 35,535 35,535 35,535 35,535 40,612 40,612 40,612 40,612 45,688 45,688 55,841 55,841
  Speed rpm 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,360 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   2 2 2 4 2 4 4 2 4 4 4 4 3 3 4 4 4 4 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
Sound power level Cooling Nom. dBA 83.7 86.2 87 86.7 88.8 88.1 88.7 90 90.8 90.8 90.8 90.8 91 91 91.8 91.8 91.9 91.9 92.7 92.7 91.9 91.9 93.3 93.3 93.4 93.4 93.9 93.9 94 94 94.5 94.5 95.3 95.3
Sound pressure level Cooling Nom. dBA 66.3 68.5 69.3 68.4 70.7 69.5 70.1 71.6 71.8 71.8 71.8 71.8 72 72 72.3 72.3 72.4 72.4 73.2 73.2 72.4 72.4 73.3 73.3 73.4 73.4 74 74 74 74 74.1 74.1 74.6 74.6
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675
  Circuits Quantity   1 1 1 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 10 11 12.5 15 14 18 18 17 36 36 38 38 36 36 42 42 43 43 50 50 44 44 57 57 58 58 60 60 62 62 80 80 90 90
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281
  (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding
  (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options.
  (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only
  (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans
  (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced.
  (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book