Tabla de especificaciones técnicas EWYQ-F-XS

EWYQ160F-XS EWYQ190F-XS EWYQ210F-XS EWYQ230F-XS EWYQ310F-XS EWYQ340F-XS EWYQ380F-XS EWYQ400F-XS EWYQ430F-XS EWYQ510F-XS EWYQ570F-XS EWYQ630F-XS
Nivel de presión sonora Refrigeración Nom. dBA 72 (5) 74 (5) 75 (5) 76 (5) 77 (5) 77 (5) 78 (5) 78 (5) 79 (5) 79 (5) 79 (5) 80 (5)
Límites de funcionamiento Lado del aire Refrigeración Mín. °CBS -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12) -10 (12)
      Máx. °CBS 46 46 46 46 46 46 46 46 46 46 46 46
    Calefacción Máx. °CBS 20 20 20 20 20 20 20 20 20 20 20 20
      Mín. °CBS -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
  Lado del agua Calefacción Mín. °CBS 25 25 25 25 25 25 25 25 25 25 25 25
      Máx. °CBS 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12) 50 (12)
    Refrigeración Máx. °CBS 15 15 15 15 15 15 15 15 15 15 15 15
      Mín. °CBS -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12) -13 (12)
Carga Por circuito kg 16.0 20.0 20.0 24.0 35.0 36.0 35.0 46.0 46.0 55.0 52.5 68.0
  Por circuito TCO2Eq 33.4 41.8 41.8 50.1 73.1 75.2 73.1 96.0 96.0 114.8 109.6 142.0
Compresor Aceite Volumen cargado l 14 16 19 23 26 25 25 25 25 38 38 38
  Cantidad_ Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll Compresor scroll
Calefacción de espacios general Unidad aire-agua Flujo nominal (exterior) m³/h 81,277 77,735 97,171 97,171 155,473 155,473            
  Otros Control de capacidad 0.9 0.9 0.9 0.9 0.9 0.9            
Peso Peso operativo kg 1,470 1,890 2,340 2,390 2,980 2,990 3,000 3,840 3,850 4,370 4,400 4,780
  Unidad kg 1,430 1,850 2,300 2,350 2,900 2,910 2,920 3,730 3,750 4,250 4,280 4,670
Intercambiador de calor de aire Tipo Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral Aleta de alta eficiencia y tipo tubo con subenfriador integral
General Información sobre el proveedor/fabricante Nombre y dirección Daikin Applied Europe Daikin Applied Europe Daikin Applied Europe Daikin Applied Europe Daikin Applied Europe Daikin Applied Europe            
  Descripción del producto General-=-Product description-=-Low temperature heat pump No No No No No No            
Nivel de pot. son. LW(A) (según EN14825) dB(A) 92 94 95 95 97 97            
Refrigerante Circuitos Cantidad 2 2 2 2 2 2 2 2 2 2 2 2
  Refrigerant-=-Refrigerant type 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5
Motor del ventilador Entrada Calefacción W 7,000 7,000 8,800 8,800 14,000 14,000 14,000 17,500 17,500 21,000 21,000 24,500
    Refrigeración W 7,000 7,000 8,800 8,800 14,000 14,000 14,000 17,500 17,500 21,000 21,000 24,500
  Transmisión Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea Directo en línea
Capacidad de refrigeración Nom. kW 164 (1) 184 (1) 205 (1) 231 (1) 304 (1) 335 (1) 376 (1) 401 (1) 427 (1) 502 (1) 565 (1) 624 (1)
Conexiones de tubería Piping connections-=-Evaporator water inlet outlet od 2.5" 2.5" 2.5" 2.5" 3" 3" 3" 3" 3" 3" 3" 3"
Intercambiador de calor de agua Volumen de agua l 18 18 18 18 44 44 44 60 60 70 70 70
  Caída de presión del agua Refrigeración Nom. kPa 22 28 36 40 21 27 30 29 34 37 42 56
    Calefacción Nom. kPa 25 32 43 50 25 31 37 33 40 43 50 66
  Caudal de agua Refrigeración Nom. l/s 7.8 8.8 9.8 11.1 14.6 16.0 18.0 19.2 20.4 24.0 27.1 29.9
    Calefacción Nom. l/s 8.3 9.5 10.9 12.2 15.9 17.5 19.5 20.7 22.3 25.8 29.3 32.5
  Material aislante Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas Intercambiador de calor de placas
Consumo Refrigeración Nom. kW 57.6 (1) 63.3 (1) 70.3 (1) 79.3 (1) 102 (1) 114 (1) 129 (1) 138 (1) 145 (1) 172 (1) 195 (1) 214 (1)
  Calefacción Nom. kW 54.0 (2) 61.6 (2) 70.5 (2) 79.2 (2) 101 (2) 113 (2) 126 (2) 133 (2) 140 (2) 167 (2) 190 (2) 210 (2)
Nivel de potencia sonora Refrigeración Nom. dBA 92 94 95 95 97 97 98 99 99 99 100 100
Dimensiones Unidad Anchura mm 1,200 1,200 1,200 1,200 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
    Profundidad mm 4,370 4,370 5,270 5,270 4,125 4,125 4,125 5,025 5,025 5,925 5,925 6,825
    Altura mm 2,270 2,270 2,270 2,270 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220
Control de capacidad Capacidad mínima % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 17.0 17.0 17.0
  Método Etapa Etapa Etapa Etapa Etapa Etapa Etapa Etapa Etapa Etapa Etapa Etapa
Casing Color Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada Lámina de acero galvanizado pintada
Calefacción de espacios Temp. agua salida, clima medio 35°C Condición A (-7°CBS/-8°CBH) PERd % 100.0 100.0 100.0 100.0 100.0 100.0            
      Pdh kW 113.3 135.2 148.9 168.4 225.7 248.6            
      Space heating-=-Average climate water outlet 35°C-=-A Condition (-7°CDB/-8°CWB)-=-Copd 2.55 2.66 2.55 2.58 2.64 2.62            
    Condición C (7°CBS/6°CBH) Pdh kW 51.6 60.8 67.7 76.4 89.7 98.8            
      PERd % 31.0 32.0 31.0 31.0 28.0 28.0            
      Space heating-=-Average climate water outlet 35°C-=-C Condition (7°CDB/6°CWB)-=-Copd 0.9 0.9 0.9 0.9 0.9 0.9            
    Condición D (12°CBS/11°CBH) Pdh kW 22.2 26.1 29.1 32.9 38.5 42.5            
      PERd % 9.7 9.7 8.7 8.5 8.5 8.1            
      Space heating-=-Average climate water outlet 35°C-=-D Condition (12°CDB/11°CWB)-=-Copd 0.9 0.9 0.9 0.9 0.9 0.9            
    Capac. supl. de salida calorífica nom. Psup (Tdesign -10°C) kW 34.5 36.2 44.4 49.0 27.5 29.3            
    General Consumo energético anual kWh 92,938 104,749 120,811 136,081 143,991 153,204            
      Ƞs (Efic. estac. de calef. de habitaciones) % 128 134 129 129 143 147            
      Valor nominal P a -10°C kW 147 173 192 217 255 281            
      Space heating-=-Average climate water outlet 35°C-=-General-=-Scop 3.28 3.42 3.31 3.30 3.64 3.75            
    Condición B (2°CBS/1°CBH) Pdh kW 79.2 93.3 103.8 117.1 148.7 163.7            
      PERd % 56.0 57.0 56.0 56.0 50.0 50.0            
      Space heating-=-Average climate water outlet 35°C-=-B Condition (2°CDB/1°CWB)-=-Copd 0.9 0.9 0.9 0.9 0.9 0.9            
    Tbiv (temperatura bivalente) Pdh kW 118.4 139.5 155.3 175.2 225.7 248.6            
      PERd % 100.0 100.0 100.0 100.0 100.0 100.0            
      Tbiv °C -5 -5 -5 -5 -7 -7            
      Space heating-=-Average climate water outlet 35°C-=-Tbiv (bivalent temperature)-=-Copd 2.69 2.77 2.69 2.71 2.64 2.62            
    Tol (límite de funcionamiento de Temp.) PERd % 100.0 100.0 100.0 100.0 100.0 100.0            
      WTOL °C 50 50 50 50 50 50            
      Pdh kW 112.1 136.6 147.9 167.8 227.6 251.7            
      TOL °C -10 -10 -10 -10 -10 -10            
      Space heating-=-Average climate water outlet 35°C-=-Tol (temperature operating limit)-=-Copd 2.50 2.66 2.52 2.55 2.63 2.62            
Fan Diámetro mm 800 800 800 800 800 800 800 800 800 800 800 800
  Caudal de aire Nom. l/s 22,577 21,593 26,992 26,992 43,187 43,187 43,187 55,213 53,983 64,780 64,780 75,577
  Velocidad rpm 900 900 900 900 900 900 900 900 900 900 900 900
  Cantidad Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo Helicoidal directo
Capacidad de calefacción Nom. kW 173 (2) 197 (2) 227 (2) 254 (2) 329 (2) 362 (2) 404 (2) 429 (2) 463 (2) 535 (2) 607 (2) 674 (2)
Cop 3.73 3.89 3.81 3.71 4.07 4.19 3.99 3.96 4.14 4.20 3.98 4.06
Ventiladores Corriente nominal de funcionamiento A 16 16 20 20 32 32 32 40 40 48 48 56
Compresor Corriente máxima de funcionamiento A 61 75 72 88 107 116 131 131 145 174 191 218
  Límites de tensión Mín. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Máx. % 10 10 10 10 10 10 10 10 10 10 10 10
  Tensión V 400 400 400 400 400 400 400 400 400 400 400 400
  Método de arranque_ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
Compresor 2 Corriente máxima de funcionamiento A 61 75 72 88 107 116 131 145 145 174 203 218
Alimentación eléctrica Límites de tensión Máx. % 10 10 10 10 10 10 10 10 10 10 10 10
    Mín. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Frecuencia Hz 50 50 50 50 50 50 50 50 50 50 50 50
  Tensión V 400 400 400 400 400 400 400 400 400 400 400 400
  Fase 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
Unidad Corriente de la unidad máx. para el tamaño de los cables A 152 182 181 216 271 290 324 348 363 436 486 540
  Corriente de arranque Máx. A 282 536 353 560 600 516 637 659 666 648 787 827
  Corriente de func. Refrigeración Nom. A 115 140 128 162 193 205 235 251 257 307 353 384
    Máx. A 138 165 164 196 246 264 295 316 330 396 442 491
Notas Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga. Refrigeración: temp. del agua de entrada al evaporador 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga.
  Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga. Calefacción: intercambiador de aire 7,0 - 90%°C; intercambiador de agua 40,0/45,0, unidad funcionando a plena carga.
  El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825. El valor de SCOP se basa en las siguientes condiciones: Tbivalent +2°C, Tdesign -10°C, condiciones ambientales medias, Ref. EN14825.
  Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua Líquido: Agua
  Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744 Los niveles de presión sonora se miden a una temp. de agua de entrada al evaporador de 12℃; temp. del agua de salida del evaporador 7℃; temp. del aire ambiente 35°C; operación a plena carga; norma: ISO3744
  Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%. Tolerancia de tensión admitida ± 10%. El desequilibro entre fases debe estar comprendido entre ± 3%.
  Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque. Corriente de arranque máxima: corriente de arranque del compresor más grande + corriente de los otros compresores a carga máxima + corriente de los ventiladores a carga máxima. En el caso de unidades con control Inverter, no se experimenta corriente de entrada durante el arranque.
  Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores Corriente nominal en el modo de refrigeración: temp. del agua de entrada al evaporador 12°C; temperatura del agua de salida del evaporador 7℃; temp. ambiente del aire exterior 35°C. Corriente de compresor + ventiladores
  La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores La corriente máxima de funcionamiento se basa en la máxima corr4iente de compresor absorbida en su envolvente y la máxima corriente absorbida de los ventiladores
  La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida. La máxima corriente de unidad para dimensionado de cables se basa en la tensión mínima permitida.
  Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1 Corriente máxima para el tamaño de los cables: (amperios a plena carga de los compresores + corriente de los ventiladores) x 1,1
  Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento. Encontrará más detalles en el diagrama de límites de funcionamiento.
  El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad. El equipo contiene gases fluorados de efecto invernadero. La carga de refrigerante real depende de la construcción final de la unidad, se puede obtener más información en las etiquetas de la unidad.